Binary Multipliers on Quantum-Dot Cellular Automata
نویسندگان
چکیده
This article describes the design of ultra-low-power multipliers on quantumdot cellular automata (QCA) nanotechnology, promising very dense circuits and high operating frequencies, using a single homogeneous layer of the basic cells. We construct structures without the earlier noise problems, verified by the QCADesigner coherence vector simulation. Our results show that the wiring overhead of the arithmetic circuits grows quadratically with the operand word length, and our pipelined array multiplier has linearly better performance-area efficiency than the previously proposed serial-parallel structure. Power analysis at the fundamental Landauer’s limit shows, that the operating frequencies will indeed be bound by the energy dissipated in information erasure: under irreversible operation, the limits for the clock rates on molecular QCA are much lower, than the switching speeds of the technology.
منابع مشابه
A fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملLow Power and Low Latency Phase-Frequency Detector in Quantum-Dot Cellular Automata Nanotechnology
Nowadays, one of the most important blocks in telecommunication circuits is the frequency synthesizer and the frequency multipliers. Phase-frequency detectors are the inseparable parts of these circuits. In this paper, it has been attempted to design two new structures for phase-frequency detectors in QCA nanotechnology. The proposed structures have the capability of detecting the phase ...
متن کاملNovel Phase-frequency Detector based on Quantum-dot Cellular Automata Nanotechnology
The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occup...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کامل